The veering census

Saul Schleimer
University of Warwick
ICERM 2019-11-03

joint work with
Henry Segerman

IIlustrating Dynamics and Probability

Nov 11-15, 2019

Organizing Committee

- Jayadev Athreya

University of Washington

- Alexander Holroyd

Churchill College and Statistical Laboratory at University of Cambridge

- Sarah Koch

University of Michigan, Ann Arbor

A stable matching in the plane.
Image credit: Alexander E. Holroyd.
Picture based on research by Christopher Hoffman,
Alexander Holroyd and Yuval Peres.

Tools and applications

Example

The $(-2,3,7)$ pretzel knot

The $(-2,3,7)$ pretzel knot

Triangulations

Veering tetrahedra

red fan

red on top toggle

blue fan

blue on top toggle

The $(-2,3,7)$ pretzel knot

Veering triangulations are rare

The SnapPea census (up to seven tetrahedra)

- 4,815 orientable triangulations
- All are geometric so all have strict angle structures
- 13,599 taut angle structures on these triangulations
- 158 veering structures (on 151 triangulations)

Another way to sample triangulations: explore the Pachner graph of triangulations of a manifold.

(Matveev (1987), Piergallini

 (1988)) The Pachner graph is connected under 2-3 and 3-2 moves.

In the "ceiling 9" subgraph of the Pachner graph for the $(-2,3,7)$ pretzel knot complement:
triangulations
admit a taut angle structu
admit a strict angle struct
admit a veering structure

1,222,561
100\%

admit a taut angle structure	153,474	12.6%
admit a strict angle structure	2,365	0.193%

admit a veering structure
10.0000818%

Censuses

NIXXId TIXXX T0 Λ
THE FIRST SEVEN ORDERS OF KNOTTINESS．

$=$

为？

？ ＜＜
P隹
＜
（安
PQ～
为
为
解
等
IX8
Trans．Roy Soc Edin？

$\rightarrow \infty$ P家 （x） （x） （x）Aの安離 $000 \times$为
 ค ＜
 $8)^{\circ}$ （oses） \square管 （
（2）

？ （20）息 （x） （on）为

为
（x） 8

（x）心

客
 －

480

 Bea：Censuses in low-dimensional topology

- Knots: Tait, Little, Conway, Rolfsen, Hoste-ThistlewaiteWeeks, Champanerkar-Kofman—Mullen, ...
- Manifolds: Weeks, Matveev, Callahan-HildebrandWeeks, Thistlewaite, Burton, ...
- Triangulations of S^{3} : Burton
- Monodromies: Bell-Hall-S, Bell

The veering census

Ideal solid tori

red fan

red on top toggle

blue on top toggle

$$
\Delta \Delta
$$

Solid tori glue to each other along rhombuses on their boundaries, matching edge colours.

To build our census of transverse veering structures, we try all such gluings.

We get a transverse veering structure if the total angle at each edge is 2π.

The $(-2,3,7)$ pretzel knot

The veering census

The number of veering structures approximately doubles every time we increase the number of tetrahedra by one.

The veering census

tetrahedra	veering	non-geometric	non-layered
2	2	0	0
3	3	0	0
4	12	0	0
5	20	0	4
6	50	0	13
7	85	0	24
8	202	0	60
9	355	1	120
10	745	3	253
11	1358	9	492
12	2867	22	1034
13	5330	52	2075
14	10972	110	4263
15	21283	234	8786
16	43763	503	18157

Census available at https://math.okstate.edu/people/segerman/veering.html

The veering census

Conjectures:

- The number of veering triangulations grows superexponentially with n.
- The percentage of veering triangulations that are geometric tends to zero as n tends to infinity.
- The percentage of veering triangulations that are layered tends to zero as n tends to infinity.
- Any hyperbolic cusped three-manifold admits only finitely many veering triangulations (and some have none).

Thank you!

A leaf carried by the stable branched surface for the veering triangulation of the figure 8 knot complement. The leaf is decomposed into sectors, and then into normal disks.

