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Abstract

This workshop will focus on the theoretical insights developed via illustration,
visualization, and computational experiment in dynamical systems and probability theory.
Some topics from complex dynamics include: dynamical moduli spaces and their
dynamically-defined subvarieties, degenerations of dynamical systems as one moves
toward the boundary of moduli space, and the structure of algebraic data coming from a
family of dynamical systems. In classical dynamical systems, some topics include: flows
on hyperbolic spaces and Lorentz attractors, simple physical systems like billiards in two
and three dimensional domains, and flows on moduli spaces. In probability theory, the
workshop features: random walks and continuous time random processes like Brownian

motion, SLE, and scaling limits of discrete systems. ) 0) _\
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A stable matching in the plane.
Image credit: Alexander E. Holroyd.
Picture based on research by Christopher Hoffman,
Alexander Holroyd and Yuval Peres.

https://icerm.brown.edu/programs/sp-f19/




Tools and applications



Example



The (-2, 3, 7) pretzel knot
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The (-2, 3, 7) pretzel knot




Triangulations



Veering tetrahedra
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The (-2, 3, 7) pretzel knot




Veering triangulations are rare



The SnapPea census (Up to seven tetranhedra)

® 4 815 orientable triangulations

® All are geometric so all have strict angle
structures

® 13,599 taut angle structures on these
triangulations

® 158 veering structures (on 151 triangulations)



Another way to sample triangulations: explore the
Pachner graph of triangulations of a manifold.

(Matveev (1987), Piergallini 2.3 move
(1988)) The Pachner graph is S
connected under 2-3 and 3-2 <«
moves. 3-2 move

In the “celling 9” subgraph of the Pachner graph for the (-2,3,7)
pretzel knot complement:

triangulations 1,222,561 100%
admit a taut angle structure 153,474 12.6%
admit a strict angle structure 2,365 0.193%

admit a veering structure 1 0.0000818%



Censuses
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Censuses in low-dimensional topology

® Knots: Tait, Little, Conway, Rolfsen, Hoste — Thistlewaite —
Weeks, Champanerkar— Kofman—Mullen, ...

® \\anifolds: Weeks, Matveev, Callahan—Hildebrand —
Weeks, Thistlewaite, Burton, ...

® Triangulations of S°: Burton

® \\/onodromies: Bell-Hall-S, Bell



The veering census



ldeal solid tori
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Solid tori glue to each other
along rhombuses on their
boundaries, matching edge
colours.

To build our census of
transverse veering
structures, we try all such
gluings.

We get a transverse veering
structure If the total angle at
each edge is 2.



The (-2, 3, 7) pretzel knot







The veering census
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he number of veering structures approximately doubles
every time we increase the number of tetrahedra by one.



The veering census

tetrahedra veering non-geometric non-layered
2 2 0 0
3 3 0 0
4 12 0 0
5 20 0 4
6 50 0 13
/ 85 0 24
8 202 0 60
9 355 1 120
10 745 3 253
11 1358 9 492
12 2867 22 1034
13 5330 52 2075
14 10972 110 4263
15 21283 234 8786
16 43763 503 18157

Census available at https://math.okstate.edu/people/segerman/veering.html



https://math.okstate.edu/people/segerman/veering.html

The veering census

Conjectures:

* The number of veering triangulations grows super-
exponentially with n.

* [he percentage of veering triangulations that are
geometric tends to zero as n tends to infinity.

* [he percentage of veering triangulations that are layered
tends to zero as n tends to infinity.

* Any hyperbolic cusped three-manifold admits only finitely
many veering triangulations (and some have none).



Thank you!
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A leaf carried by the stable branched surface for the veering triangulation of the figure 8

knot complement. The leaf is decomposed into sectors, and then into normal disks.




