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Tools and applications



Example



The (-2, 3, 7) pretzel knot
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Triangulations



Veering tetrahedra
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Veering triangulations are rare



The SnapPea census (up to seven tetrahedra) 

• 4,815 orientable triangulations 

• All are geometric so all have strict angle 
structures 

• 13,599 taut angle structures on these 
triangulations 

• 158 veering structures (on 151 triangulations) 



Another way to sample triangulations: explore the 
Pachner graph of triangulations of a manifold.

2-3 move

3-2 move

(Matveev (1987), Piergallini 
(1988)) The Pachner graph is 
connected under 2-3 and 3-2 
moves.

In the “ceiling 9” subgraph of the Pachner graph for the (-2,3,7) 
pretzel knot complement:

triangulations 1,222,561 100%
admit a taut angle structure 153,474 12.6%
admit a strict angle structure 2,365 0.193%
admit a veering structure 1 0.0000818%



Censuses





Censuses in low-dimensional topology 

• Knots: Tait, Little, Conway, Rolfsen, Hoste—Thistlewaite—
Weeks, Champanerkar—Kofman—Mullen, … 

• Manifolds: Weeks, Matveev, Callahan—Hildebrand—
Weeks, Thistlewaite, Burton, … 

• Triangulations of S3: Burton 

• Monodromies: Bell-Hall-S, Bell
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Ideal solid tori
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Solid tori glue to each other 
along rhombuses on their 
boundaries, matching edge 
colours. 

To build our census of 
transverse veering 
structures, we try all such 
gluings. 

We get a transverse veering 
structure if the total angle at 
each edge is     .  2π
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The number of veering structures approximately doubles 
every time we increase the number of tetrahedra by one.
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The veering census



tetrahedra veering non-geometric non-layered

2 2 0 0
3 3 0 0
4 12 0 0
5 20 0 4
6 50 0 13
7 85 0 24
8 202 0 60
9 355 1 120

10 745 3 253
11 1358 9 492
12 2867 22 1034
13 5330 52 2075
14 10972 110 4263
15 21283 234 8786
16 43763 503 18157

Census available at https://math.okstate.edu/people/segerman/veering.html
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The veering census
Conjectures:  

• The number of veering triangulations grows super-
exponentially with n. 

• The percentage of veering triangulations that are 
geometric tends to zero as n tends to infinity. 

• The percentage of veering triangulations that are layered 
tends to zero as n tends to infinity. 

• Any hyperbolic cusped three-manifold admits only finitely 
many veering triangulations (and some have none).



Thank you!

A leaf carried by the stable branched surface for the veering triangulation of the figure 8 
knot complement. The leaf is decomposed into sectors, and then into normal disks. 


